Extensions 1→N→G→Q→1 with N=C4xC12 and Q=C32

Direct product G=NxQ with N=C4xC12 and Q=C32
dρLabelID
C3xC122432C3xC12^2432,512

Semidirect products G=N:Q with N=C4xC12 and Q=C32
extensionφ:Q→Aut NdρLabelID
(C4xC12):C32 = C32xC42:C3φ: C32/C3C3 ⊆ Aut C4xC12108(C4xC12):C3^2432,463

Non-split extensions G=N.Q with N=C4xC12 and Q=C32
extensionφ:Q→Aut NdρLabelID
(C4xC12).1C32 = C9xC42:C3φ: C32/C3C3 ⊆ Aut C4xC121083(C4xC12).1C3^2432,99
(C4xC12).2C32 = C42:3- 1+2φ: C32/C3C3 ⊆ Aut C4xC121083(C4xC12).2C3^2432,100
(C4xC12).3C32 = C3xC42:C9φ: C32/C3C3 ⊆ Aut C4xC12108(C4xC12).3C3^2432,101
(C4xC12).4C32 = C122.C3φ: C32/C3C3 ⊆ Aut C4xC12363(C4xC12).4C3^2432,102
(C4xC12).5C32 = C42:He3φ: C32/C3C3 ⊆ Aut C4xC12363(C4xC12).5C3^2432,103
(C4xC12).6C32 = C42xHe3central extension (φ=1)144(C4xC12).6C3^2432,201
(C4xC12).7C32 = C42x3- 1+2central extension (φ=1)144(C4xC12).7C3^2432,202

׿
x
:
Z
F
o
wr
Q
<